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ABSTRACT Different members of the Mycobacterium genus have evolved to cause tuberculosis in diverse human populations
and in a variety of animal species. Our cumulative knowledge of mycobacterial genomes indicates that mutations in the PhoPR
two-component virulence system were acquired not only during the natural evolution of mycobacterial species but also during
in vitro subculture, which has given rise to the attenuated reference strain H37Ra or to different daughter strains of Mycobacte-
rium bovis BCG. PhoPR is a well-known regulator of pathogenic phenotypes, including secretion of the virulence factor ESAT-6,
biosynthesis of acyltrehalose-based lipids, and modulation of antigen export, in members of the Mycobacterium tuberculosis
complex (MTBC). Evolutionarily conserved polymorphisms in PhoPR from Mycobacterium africanum, M. bovis, or M. tubercu-
losis H37Ra result in loss of functional phenotypes. Interestingly, some members of the MTBC have acquired compensatory mu-
tations to counteract these polymorphisms and, probably, to maintain their pathogenic potential. Some of these compensatory
mutations include the insertion of the IS6110 element upstream from phoPR in a particular M. bovis strain that is able to trans-
mit between humans or polymorphisms in M. africanum and M. bovis that affect the regulatory region of the espACD operon,
allowing PhoPR-independent ESAT-6 secretion. This review highlights the increasing knowledge of the significance of PhoPR in
the evolution of the MTBC and its potential application in the construction of new attenuated vaccines based on phoPR inactiva-
tion. In this context, the live attenuated vaccine MTBVAC, based on a phoP fadD26 deletion mutant of M. tuberculosis, is the
first vaccine of this kind to successfully enter into clinical development, representing a historic milestone in the field of human
vaccinology.

MYCOBACTERIUM TUBERCULOSIS COMPLEX MEMBERS HAVE
EVOLVED TO CAUSE TUBERCULOSIS IN HUMANS AND
ANIMALS

Mycobacteria are widely distributed in the environment and
are considered high-GC Gram-positive bacteria. In contrast

to other Gram-positive bacteria, mycobacteria possess a multilay-
ered cell envelope rich in uncommon lipids that are responsible
for the acid-fast/Zielh-Neelsen staining of these organisms. The
Mycobacterium genus is usually subdivided into fast- and slow-
growing species, based on their ability to develop colonies in less
or more than 7 days, respectively. Fast-growing species are in gen-
eral opportunistic or nonpathogenic bacteria, whereas slow grow-
ers include human-pathogenic mycobacteria, such as M. tubercu-
losis, M. ulcerans, and M. leprae, causing tuberculosis, Buruli ulcer
disease, and leprosy, respectively. In this review, we focus on the
M. tuberculosis complex (MTBC), comprising a group of closely
related tuberculosis-causing subspecies or ecotypes adapted to
different animal hosts, including humans. According to phyloge-
netic distances, the MTBC species can be classified into eight ma-
jor lineages (L1 to L8), which include the human-adapted
ecotypes M. tuberculosis (L1 to L4 and L7), M. africanum (L5 and
L6), and M. canettii and the animal-adapted ecotypes M. bovis,
M. caprae, M. microti, M. pinnipedii, M. orygis, and M. mungi (1,
2), which are grouped into L8 (Fig. 1A). Similarly to L8 species,
which have evolved to infect specific mammals, human-adapted
strains have evolved to cause tuberculosis in human subpopula-
tions. Accordingly, M. canettii was originally isolated in the Horn
of Africa (3), M. africanum L5 and L6 strains are commonly found
in West African countries (4), M. tuberculosis L7 is frequent in

Ethiopia and L1 in the Indian Ocean rim, and M. tuberculosis L2,
L3, and L4, which show wider distribution, predominantly infect
people from East Asia, East India, and the Americas and Europe,
respectively (2). It is important to consider that members of the
MTBC are a highly clonal population, which is particularly well
reflected by the evolutionary hyperconservation of human T-cell
epitopes. Remarkably, 95% of 491 analyzed epitopes from across
MTBC species showed no amino acid changes (5), a finding that
might reflect a potential benefit for MTBC species of being recog-
nized by the host immune system at some stage of the pathogen-
esis cycle.

Aside from the natural evolution of the MTBC, the importance
of the in vitro evolution during laboratory subcultivation is also
worth noting. This process led to dissociation of the H37R strain
into the H37Ra and H37Rv strains in 1934 (Fig. 1B) (6); both
strains are widely used today as attenuated and virulent laboratory
reference strains, respectively. Another example of in vitro atten-
uation comes from the generation of the parental Mycobacterium
bovis BCG strain in 1921, which was originally distributed to dif-
ferent laboratories throughout the world and maintained by sub-

Published 20 October 2015

Citation Broset E, Martín C, Gonzalo-Asensio J. 2015. Evolutionary landscape of the
Mycobacterium tuberculosis complex from the viewpoint of PhoPR: implications for
virulence regulation and application to vaccine development. mBio 6(5):e01289-15.
doi:10.1128/mBio.01289-15.

Copyright © 2015 Broset et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 Unported license.

Address correspondence to Carlos Martín, carlos@unizar.es, or Jesús Gonzalo-Asensio,
jagonzal@unizar.es.

MINIREVIEW crossmark

September/October 2015 Volume 6 Issue 5 e01289-15 ® mbio.asm.org 1

http://orcid.org/0000-0003-2993-5478
http://orcid.org/0000-0001-8841-6593
http://creativecommons.org/licenses/by/3.0/
http://crossmark.crossref.org/dialog/?doi=10.1128/mBio.01289-15&domain=pdf&date_stamp=2015-10-20
mbio.asm.org


culture passages under nonstandardized growth conditions, a
process that led to several BCG daughter strains (Fig. 1C) (7).

This review will focus on the PhoPR virulence system and the
polymorphisms acquired either during the natural evolution of
the MTBC or during in vitro generation of H37Ra and BCG labo-
ratory strains. As highlighted in this review, these polymorphisms
could have an enormous impact on PhoPR-controlled virulence
phenotypes. Taking into account the highly clonal population
structure of the MTBC and the key role of PhoPR in MTBC viru-
lence, we can hypothesize that mutations in PhoPR that appar-

ently occurred randomly might rather have contributed to the
evolution of the MTBC.

THE PhoPR TCS IN M. TUBERCULOSIS

Two-component systems (TCS) are highly conserved prokaryotic
signal transduction pathways that consist of a histidine kinase
(HK) as the sensor and a response regulator (RR) as the effector.
The HK, often membrane associated, is responsible for detecting
extracellular stimuli. In response to signal sensing, the HK auto-
phosphorylates itself and then transfers its phosphate to the RR,
which alters its conformation and modulates gene expression,
usually through DNA binding. Overall, this mechanism enables
bacterial adaptation to the initial stimulus (8). Intracellular patho-
gens usually use TCS to respond to host defenses and are often
essential for virulence; the Salmonella PhoP is the most widely
studied example (9).

Compared with environmental bacteria, the intracellular
pathogen M. tuberculosis possesses few TCS; it has 11 operons
(senX3-regX3, rv600c-rv601c-tcrA, phoPR, narL-rv0845, prrAB,
mprAB, kdpDE, trcRS, dosRS-dosT, mtrAB, and tcrXY) and a
paired HK and RR (pdtaR [rv1626]-pdtaS [rv3220c]), as well as 4
orphan RRs (rv0260, rv0818, rv2884, and rv3143) and an orphan
HK (rv2027) (8). This relatively small number of TCS might very
well reflect the adaptation of M. tuberculosis to the intracellular
lifestyle, an assumption corroborated by the genetic decay of these
transduction systems in the obligate intracellular pathogen M. lep-
rae, with only 5 functional TCS. With the exception of rv600c-
rv601c-tcrA, overexpression and mutant strains with modifica-
tions in these TCS have been constructed, revealing diverse roles
in M. tuberculosis virulence and physiology (8). One of the most
widely studied TCS in M. tuberculosis is the PhoPR (rv0757-
rv0758) virulence system, originally annotated in accordance with
its homology with phoPR from Bacillus subtilis, which responds to
phosphate starvation (10). However, ever since the essential role
of PhoPR in M. tuberculosis virulence was demonstrated (11–14),
it has been assumed that M. tuberculosis phoPR acts as a virulence-
controlling factor resembling phoPQ in the intracellular pathogen
Salmonella spp.

PhoPR-DEPENDENT PHENOTYPES AND THEIR ROLE IN
VIRULENCE

Pioneering studies demonstrated that a phoP mutant constructed
in the M. tuberculosis strain MT103 clinical isolate was unable to
replicate in bone marrow-derived macrophages and showed
marked attenuation in intravenously inoculated BALB/c mice, as
assessed by absence of replication in lungs, spleen, and liver (11).
It was also observed that phoP mutants exhibited altered colony
morphology, diminished cording formation, and smaller bacillary
size than the wild type. These phenotypes, putatively related to the
cell wall composition, led different laboratories to study the lipid
content in phoP and phoPR mutants constructed in strains MT103
(L4), Beijing-GC1237 (L2), and H37Rv (L4), demonstrating that
PhoP controls the biosynthesis of sulfolipid (SL) and di- and
polyacyltrehaloses (DAT and PAT) (13, 15). These lipids are re-
stricted to the pathogenic species of MTBC and are only absent in
M. africanum L6 and M. bovis (14). Various roles have been pro-
posed for SL, including inhibiting phagosome maturation (16),
blocking monocyte priming (17), increasing superoxide produc-
tion by neutrophils (18), increasing phagosome acidification (19),
and restricting growth in human macrophages (20), among oth-

FIG 1 The phylogenies of the Mycobacterium tuberculosis complex and BCG
include several polymorphisms in the PhoPR virulence system. (A) Evolution-
ary scenario of the MTBC showing the presence of the different members
belonging to specific lineages. Adaptation of these species to humans and an-
imals is also indicated. (B) Expanded view of lineage 4, showing representative
strains. The Leu152Pro substitution in PhoR, exclusively in H37Rv and its
attenuated form H37Ra, and a Ser219Leu substitution in PhoP from H37Ra
are indicated. (C) Genealogy of M. bovis BCG daughter vaccine strains
grouped by different phylogenetic markers. Deletion of RD1, responsible for
BCG attenuation, and dates indicating genetic drifts are shown. Note the evo-
lution of M. bovis strain B by acquisition of an IS6110 insertion upstream from
the phoP gene. Other polymorphisms and RD deletions present in these phy-
logenies have been omitted for clarity; red-filled circles indicate phylogenetic
locations of phoPR polymorphisms.
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ers. However, a pks2 mutant deficient in SL showed no effect on
the persistence, replication, and pathogenicity of H37Rv in
BALB/c mice and guinea pigs (21), whereas a mutant with a mu-
tation in the SL transporter Mmpl8 constructed in the Erdman
strain showed decreased virulence in C57BL/6 mice (22). Con-
cerning DAT and PAT, the second group of PhoP-controlled lip-
ids, their role in downmodulation of interleukin 2 (IL-2), IL-10,
IL-12, and tumor necrosis factor alpha (TNF-�) responses in
CD4� and CD8� human T cells has been demonstrated (23), and
an H37Rv pks3/4 mutant deficient in DAT and PAT attached less
efficiently to human phagocytic and nonphagocytic cells, al-
though it did not display reduced virulence in mice (24). The
coordinated regulation of SL and DAT/PAT by PhoP led us to
think that the combined absence of these lipids might be required
to attain attenuation in the mouse model. To test this hypothesis,
a pks2-pks3/4 mutant deficient in SL and DAT/PAT was con-
structed in H37Rv and used for intravenous infection of BALB/c
mice; however, unlike phoP mutants, the pks2-pks3/4 mutant ex-
hibited very subtle changes in virulence as assessed by enumera-
tion of viable bacteria per organ (25). This finding indicated that,
in addition to the impaired synthesis of acyltrehalose-based lipids,
other altered PhoPR-regulated phenotypes likely contribute to the
attenuation of phoPR-deficient strains.

The explanation of this speculation arose from molecular char-
acterization studies of the attenuated H37Ra strain, where it was
demonstrated that PhoP controls the secretion of ESAT-6 by reg-
ulating the espACD gene cluster (26). This finding could explain
the attenuation of phoP mutants, since ESAT-6 is considered one
of the major virulence factors secreted by M. tuberculosis. In this
context, it is important to mention that the deletion of region of
difference 1 (RD1), which contains ESAT-6 and a major part of its
secretion system (ESX-1), in the BCG vaccine strain (Fig. 1C) is
considered the primary mechanism for the attenuation and safety
of this strain (27, 28). Recent works have made major advances in
elucidating the biological role of ESAT-6 in promoting phago-
some escape (29, 30) and in mediating macrophage apoptosis (31,
32). The latter phenotype is involved in the cell-to-cell spread of
pathogenic strains and, consequently, in the propagation of M. tu-
berculosis (33). These results are strengthened by those of in vivo
infection studies using an RD1 mutant constructed in H37Rv,
which displayed strong attenuation phenotypes both in vitro in
human macrophages and in vivo in the C57BL/6 mouse model
(34, 35). Aside from its role in virulence, RD1 was recently re-
ported to be an important source of human T-cell epitopes, most
of which are contained in ESAT-6 (36, 37). The key role of ESAT-6
secretion in virulence, together with the lack of its secretion ob-
served in M. tuberculosis phoPR mutants, might represent a likely
basis of attenuation for strains lacking a functional PhoPR system.
Moreover, considering the immunogenic properties of RD1 and
ESAT-6, attenuated M. tuberculosis phoPR mutants expressing
genes contained in RD1 but not secreting the proteins they encode
(including ESAT-6) could represent an attractive feature in the
rational construction of new tuberculosis vaccines. Additionally,
an M. tuberculosis phoP mutant displays increased immunogenic-
ity and enhanced generation of memory T-cell subsets in mice
compared to those of BCG (12, 38). In line with these data, a
recent work has demonstrated an increased secretion of substrates
(including immunodominant antigens) from the twin-arginine
translocation (TAT) export pathway, a phenotype that depends
on a PhoP-regulated noncoding RNA (39). Taken together, the

adequate attenuation profile and higher immunogenicity exhib-
ited by M. tuberculosis phoP mutants support the generation of
potential phoP-based candidates as vaccines against human tuber-
culosis, as will be explained below.

THE PhoP VIRULENCE REGULATOR EXPLAINED AT THE
MOLECULAR LEVEL

PhoP, encoded by the rv0757 gene of M. tuberculosis H37Rv, acts
as the RR of the PhoPR TCS, and both genes are transcribed in a
single operon and are autoregulated by PhoP, even though the
phoR gene also has its own promoter (40). Similar to other RRs,
PhoP binds its cognate DNA sequences as a dimer (41), as revealed
by the structure of the protein forming a homodimer through its
N-terminal receiver domain (42). As demonstrated by site-
directed mutagenesis, the 27.5-kDa protein is phosphorylated at
the Asp71 position in an Mg2�-dependent reaction (43). Phos-
phorylation enhances the binding affinity of PhoP for its target
promoters, as demonstrated in in vitro experiments using the re-
combinant protein phosphorylated with the chemical phospho-
donor acetyl phosphate (44, 45).

In an attempt to decipher the entire PhoP regulon, different
laboratories compared the transcriptomes of wild-type and phoP
mutant strains using microarrays, which led to the identification
of PhoP-regulated genes in the M. tuberculosis H37Rv laboratory
strain (13) and the MT103 clinical isolate (46). Both works gener-
ated comparable datasets and allowed the identification of the
PhoP-controlled genes responsible for the absence of SL and
DAT/PAT in phoP mutants. Among these genes, pks2, papA1, and
mmpL8 are required for SL synthesis and export (22, 47, 48) and
pks3, papA3, chp2 (rv1184c), and mmpl10 are involved in DAT/
PAT biosynthesis (49). Furthermore, these microarray compari-
sons began the delineation of the molecular mechanism by which
PhoP controls ESAT-6 secretion, as exemplified by differential
expression of several ESX-1 genes coding for the ESAT-6 secretory
apparatus (46). Although microarray analyses are useful to obtain
a global landscape of gene expression, they frequently fail to an-
swer some basic biological questions, such as whether a given gene
is directly or indirectly regulated by transcription factors or
whether there are transcripts in noncoding regions.

The systematic use of next-generation sequencing (NGS) tech-
niques has solved these problems, and these techniques have pro-
vided an unprecedented level of detail in transcriptional regula-
tion. A recent work applied two NGS techniques to study the PhoP
regulatory network (39); chromatin immunoprecipitation se-
quencing (ChIP-seq) made it possible to detect all PhoP binding
regions throughout the M. tuberculosis H37Rv chromosome and,
consequently, to dissect those genes which are directly regulated
by PhoP, and using high-resolution transcriptomic analysis
(RNA-seq), it was possible to obtain a detailed transcriptome and
to identify PhoP-dependent transcription across the entire ge-
nome, including intergenic or noncoding regions. Furthermore,
by combining the PhoP ChIP-seq and RNA-seq data with ChIP-
seq data for the RNA polymerase (50), it was possible to obtain a
fine portrait of transcriptional regulation. Thus, PhoP is fre-
quently positioned 100 bp upstream from its regulated promoters
and 50 bp upstream from the RNA polymerase (Fig. 2A), which is
consistent with the predominant role of PhoP as a transcriptional
activator. However, it was observed that in those rare cases where
PhoP is placed downstream from the RNA polymerase (e.g., PE8),
it acts as a transcriptional repressor (39), possibly by interfering
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with RNA elongation. Since ChIP-seq captures PhoP-DNA com-
plexes from whole bacteria, it covers virtually all PhoP binding
sites, making it possible to obtain a reliable PhoP consensus se-
quence. Analysis of the PhoP bindome resulted in the direct-
repeat consensus motif TCACAG(N5)TCACAG (Fig. 2A), which
largely overlaps with the TCACAGC(N4)TCACAGC motif found
in vitro by using iterative binding of recombinant PhoP to a ran-
dom pool of nucleotides (51). Moreover, it was demonstrated that
PhoP binds upstream from the pks2-papA1-mmpL8 and pks3-
pks4-papA3-mmpL10 operons (Fig. 2B and C), which were previ-

ously reported as required for SL and DAT/PAT biosynthesis, re-
spectively (22, 47–49). RNA-seq exploration confirmed previous
findings that the aforementioned operons are downregulated in
phoP mutants (39), thus explaining the absence of SL, DAT, and
PAT in strains lacking a functional phoP.

Now that the molecular mechanism responsible for PhoP con-
trol of acyltrehalose-derived lipids has been characterized, the
question of how PhoP regulates the secretion of TAT substrates
and ESAT-6 remains to be answered. Among the PhoP ChIP-seq
peaks, the most prominent interaction was detected within an

FIG 2 Molecular characteristics of the PhoPR two-component system. (A) Positioning of the PhoP transcription factor relative to the RNA polymerase and its
target genes measured as the most probable values from ChIP-seq data. The PhoP consensus motif [TCACAG(N5)TCACAG] is also indicated. (B) ChIP-seq
reads from representative promoters of PhoP-regulated genes. Note the significant increase in ChIP-seq peaks in the wild-type strain relative to those in its phoP
mutant, indicative of a specific interaction of PhoP with these regions. (C) PhoP binding motifs elucidated from ChIP-seq data from the analyses whose results
are shown in panel B. Distances to the start codons of target genes are also indicated. ORF, open reading frame. (D) Genomic locations of relevant phoP
polymorphisms discussed throughout the text. Insertions of IS6110 in the promoter region and their positions relative to the phoP start codon are shown. Amino
acid positions of the Asp71 residue, which is involved in the phosphotransfer reaction, and the Ser219Leu substitution in H37Ra are also indicated. (E) Ribbon
models of the DNA binding domain of PhoP superimposed over the structure of a PhoB-DNA complex. Solid spheres show the wild-type serine 219 in H37Rv
(left) or the leucine residue that appears in H37Ra (right) (adapted from reference 40). The mutant leucine residue is expected to interfere with DNA binding
and/or recognition. (F) Secondary structure of the PhoR sensor kinase indicating its membrane topology. Each domain has been colored individually, and
�-helices (ovals) and �-strands (arrows) are indicated. Note the presence of PhoR polymorphisms in the sensor loop, which is located in the periplasmic space.
The position of the histidine involved in the phosphotransfer reaction is also indicated.
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intergenic region, and subsequent inspection of the adjacent
RNA-seq profiles led to the proposal that a noncoding RNA
named mcr7 is the most prominent PhoP-regulated region
(Fig. 2B and C) (39). This regulation passed unnoticed in previous
microarray experiments, probably because of the absence of
probes within noncoding regions. An exhaustive characterization
of mcr7 demonstrated that this noncoding RNA posttranscrip-
tionally modulates the translation of the mRNA of tatC, an essen-
tial gene and a constituent of the TAT secretion system. As a con-
sequence of the PhoP-mcr7 regulatory loop, the TAT secretion
system is deregulated and M. tuberculosis phoP mutants secrete
increased amounts of TAT substrates (including Ag85A and
Ag85C) (39), which could contribute to the increased immuno-
genicity of these strains (38).

Regarding PhoP control of ESAT-6 secretion, in-depth explo-
ration of NGS data has allowed the proposition that PhoP is a
master regulator of different genetic networks controlling this
phenotype, as shown in Fig. 3; PhoP binds to the promoter region
of espR and regulates the expression of this gene (Fig. 2B and C)
(39, 52), which has been proposed as a nucleoid-associated pro-
tein that otherwise transcriptionally regulates the espACD operon
(53–55). Additionally, PhoP itself is also able to interact with the
espA promoter, which possesses a consensus motif for PhoP
[TCGCAG(N5)TTGCAG] (51). Taken together and considering
the essential role of EspA in ESAT-6 secretion (26, 56, 57), PhoP is
on the axis of the PhoP-EspR-EspA regulatory loop (Fig. 3). On
the other hand, it was reported recently that PhoP regulates the
expression of whiB6 by interacting with its promoter region
(Fig. 2B and C) (58). WhiB6 is located adjacent to the ESX-1
region that codes for the ESAT-6 secretory apparatus, which
points to WhiB6 as a putative regulator of this region. Indeed, the
expression of whiB6 correlated with the expression of esxA

(rv3875), the ESAT-6-coding gene, among other ESX-1 genes
(58). ChIP-seq analysis using a WhiB6 overexpression system
demonstrated that WhiB6 interacts with the promoter region of
espA, as well as with the ESX-1 genes pe35 and espB (59), both
required for ESAT-6 secretion (60, 61). Thus, a second regulatory
network involving PhoP as the master regulator and WhiB6 as a
secondary player is proposed to regulate ESAT-6 secretion, and
consequently, whiB6 is included within the ESX-1 system (Fig. 3).
The PhoP-WhiB6 regulatory network is of particular significance
in M. tuberculosis research given that a recently reported single-
nucleotide insertion in the whiB6 promoter of M. tuberculosis
H37Rv has shifted the role of PhoP from transcriptional activator
to transcriptional repressor. Consequently, ESAT-6 is expressed
and secreted at lower levels in H37Rv than in other laboratory and
clinical strains (58), a finding that highlights the importance of
validating experimental data with different M. tuberculosis strains.

PhoR AS A SENSOR OF THE INTRACELLULAR NICHE IN
M. TUBERCULOSIS

Similar to other HKs, the 52-kDa PhoR protein (encoded by
rv0758 in H37Rv) is anchored to the inner phospholipid mem-
brane by two transmembrane helices, which in turn are spanned
by a 120-amino-acid segment (positions 36 to 155) that is respon-
sible for signal sensing in the periplasmic space. The C terminus of
the protein is located in the cytosol and contains domains re-
quired for signal transduction and phosphorylation. PhoR is au-
tophosphorylated at the His259 position upon reception of the
cognate signal (Fig. 2F). Several studies have attempted to identify
the PhoPR-stimulating signal, and the first assumption was de-
rived from comparison studies with PhoPQ of Salmonella spp.,
which is known to respond to Mg2� (62). Interestingly, disruption
of phoPR in M. tuberculosis prevents growth under Mg2�-limited

FIG 3 PhoP-dependent regulatory networks implicated in the control of ESAT-6 secretion. Different genes from the ESX-1 (whiB6 to mycP1) and the extended
ESX-1 (espACD and espR) regions involved in ESAT-6 export are indicated. PhoP (blue ellipses) interacts with the espR, espA, and whiB6 promoters and controls
the expression of these genes. EspR (pink ellipses) interacts with and activates the espACD locus. WhiB6 (green circles) also interacts with the promoter regions
of espA, pe35, and espB genes. Overall, the PhoP-dependent EspR and WhiB6 regulatory circuits activate the espACD locus, which is required for ESAT-6
secretion. Locations of RD1, absent in BCG, and of RD8, absent in L6 and L8 lineages, as well as polymorphisms in espACD and whiB6 promoters (asterisks), are
also indicated.
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conditions, although transcriptional profiling studies with the
wild type and a phoPR mutant grown under high and low Mg2�

conditions showed no differences in genes involved in Mg2� ac-
quisition (13). Another assumption made using bioinformatics
analyses is that the structure that is most similar to the putative
PhoR external loop is the middle �-domain of the Escherichia coli
YggB, a small membrane-spanning ion sensor that responds to
mechanical stress; however, no experimental confirmation has
been performed (63). A recent work has demonstrated that [Cl�]
increases and pH decreases during phagosome maturation, link-
ing PhoPR to sensing these intracellular cues via a pH- and
chloride-dependent reporter system (64). In another study, the
identification of the aprABC locus (for acid and phagosome reg-
ulated) as a novel PhoP-dependent gene led the authors to pro-
pose pH as an activating stimulus for the PhoPR TCS (65). In
subsequent work, the authors identified two branches for pH ad-
aptation in M. tuberculosis, a phoPR-dependent and a phoPR-
independent branch, and found that the action of a certain branch
depended on the carbon source present (66). Given the intracel-
lular life cycle fitness of M. tuberculosis and the in vitro and in vivo
attenuation showed by phoPR mutants (11, 12), it is plausible to
link the PhoR sensor kinase with intracellular signals. Thus, one
could speculate that, following phagocytosis of M. tuberculosis by
resident macrophages, PhoR sensing of varying concentrations of
Mg2�, Cl�, or H� during phagosomal maturation would likely
result in phosphorylation of PhoP. Upon phosphorylation, PhoP

is expected to modulate the transcription of its regulon, which
could result in positive regulation of SL and DAT/PAT synthesis
and ESAT-6 secretion (Fig. 4) and in promoting immunomodu-
lation of T cells and phagosome escape. However, further experi-
ments are required to gain some insights into the molecular mech-
anism by which the sensor loop responds to these ions and to
finely demonstrate PhoP phosphorylation in response to these
stimuli. In addition, other as-yet-unexplored PhoR-stimulating
signals that contribute to PhoPR activation, particularly consider-
ing possible nonconventional ligands, cannot be discarded.

PhoPR POLYMORPHISMS DURING MTBC EVOLUTION:
SMALL CHANGES WITH HIGH IMPACT

Having reviewed the importance and molecular details of the
PhoPR system, we will analyze diverse polymorphisms that have
arisen either during the natural evolution process of MTBC or the
in vitro development of M. bovis BCG or H37Rv and its attenuated
form, H37Ra. As illustrated in Fig. 1, the MTBC and BCG phylog-
enies are spotted with several phoPR polymorphisms. Genomic
sequence analysis of the attenuated H37Ra strain uncovered a
Ser219Leu substitution (replacing Ser with Leu at position 219) in
PhoP (Fig. 1B and 2E), which causes alterations in colony mor-
phology and partially contributes to the avirulence of H37Ra (67).
Parallel studies demonstrated that this mutation is responsible for
the lack of SL, DAT, and PAT and the absence of ESAT-6 secretion
in H37Ra (25, 26). Investigation of the position of this mutation

FIG 4 Comparative illustration of PhoPR-regulated phenotypes in M. tuberculosis, M. bovis, M. africanum L6, and an M. tuberculosis phoP mutant. M. tuber-
culosis, carrying a functional PhoR, is able to sense its cognate stimulus and subsequently phosphorylate PhoP. Phosphorylated PhoP regulates three well-known
phenotypes, including synthesis of SL and DAT/PAT (via pks2 and pks3 regulation), secretion of ESAT-6 (through espA regulation, as depicted in Fig. 3), and
posttranscriptional regulation of tatC (mediated by the mcr7 noncoding RNA). M. bovis and M. africanum L6, carrying a defective PhoR G71I allele, are expected
to have defects in PhoP phosphorylation, as a consequence of which these strains lack SL, DAT, and PAT. However, ESAT-6 secretion in these strains is restored
by compensatory mutations in the espACD promoter region that include RD8 deletion and species-specific polymorphisms (asterisks). M. tuberculosis phoP
mutants lack the aforementioned PhoP-regulated phenotypes and consequently do not synthesize SL, DAT, and PAT or secrete ESAT-6. These mutants also have
a deregulated TAT system and, consequently, secrete larger amounts of TAT substrates, including the antigens Ag85A and Ag85C. Consequently, adequately
attenuated M. tuberculosis phoP-based vaccine strains, such as MTBVAC, are expected to induce improved and longer-lasting immunogenicity compared to that
of BCG in clinical trials.

Minireview

6 ® mbio.asm.org September/October 2015 Volume 6 Issue 5 e01289-15

mbio.asm.org


within the PhoP structure revealed that it affects the C-terminal
DNA binding domain (40), a finding that explains the absence of
interaction of PhoP from H37Ra with its own promoter (25, 67).
Aside from the PhoP mutation, other H37Ra polymorphisms,
such as those responsible for the absence of phthiocerol dimyco-
cerosates (PDIM), whose role in pathogenicity is well docu-
mented, could also contribute to the attenuated phenotype of
H37Ra (25).

Comparisons of phoPR from representative MTBC strains re-
vealed a Leu152Pro substitution in PhoR exclusively in H37Rv
and H37Ra (Fig. 1B and 2F). Further analysis demonstrated that
this mutation alters cell wall hydrophobicity in H37Rv, a finding
that confirms the role of PhoPR in modeling the envelope com-
position in M. tuberculosis (68). It is important to recall that
H37Rv and H37Ra are strains highly adapted to laboratory growth
conditions, and thus, it is not surprising that some virulence-
related phenotypes that are important for interactions with the
host upon infection may be less expressed or even absent in these
strains. An example is the recently identified single-nucleotide
insertion in the PhoP-regulated gene whiB6 of H37Rv, which leads
to decreased ESAT-6 expression and secretion in H37Rv com-
pared to the levels in clinical strains of M. tuberculosis (58).

When the genetic comparison of phoPR was extended to the
sequenced MTBC members, two additional polymorphisms were
identified, one causing a Gly71Ile substitution in the sensor loop
of PhoR (Fig. 1A and 2F) from M. africanum (L5 and L6) and from
animal-adapted species (L8) and the second one located 48 bp
upstream from the phoP start codon and affecting L8 species and
M. africanum L6 (Fig. 1A and 2D). A series of genetic inactivation
and complementation experiments demonstrated no effects for
the phoP promoter mutation; however, a deleterious effect of the
Gly71Ile mutation was observed in PhoPR from M. africanum L6
and from the animal-adapted species. These strains have a down-
regulated PhoP regulon and, consequently, are unable to produce
acyltrehalose-derived lipids; both phenotypes were efficiently re-
stored upon complementation with the phoR allele from M. tuber-
culosis. Unexpectedly, these strains secreted ESAT-6 indepen-
dently of the PhoR mutation (Fig. 4) (14), pointing to a
compensatory mechanism, as detailed below.

PhoPR polymorphisms were also identified upon examination
of the BCG phylogeny (Fig. 1C). Group I BCG strains differ from
the others in having an IS6110 insertion upstream from phoPR
that could affect PhoP autoregulation (Fig. 2D). Conversely, since
the IS6110 transposon might function as a mobile promoter, this
insertion might influence phoP expression; indeed, microarray
studies showed increased expression of phoP in BCG Japan (group
I) compared to its expression in BCG Pasteur (group IV). Other
polymorphisms have been shown to result in deleterious proteins:
BCG Sweden and BCG Birkhaug contain a deletion in phoR that
truncates its C terminus; a frameshift in phoR from BCG Frappier
abolishes its expression in this strain; and a frameshift in phoP
from BCG Prague eliminates the C-terminal DNA binding do-
main, resulting in a natural phoP mutant. In addition, a 10-bp
deletion in codon 91 of PhoR was found in some group III BCG
strains (Glaxo, Merieux, and Danish). Notably, group III sub-
strains are the most attenuated among all BCG daughter strains,
but the precise role of the 91-bp knockout mutation in phoR re-
mains to be elucidated (69, 70). Since BCG strains derive from an
M. bovis isolate, all are affected by the PhoR Gly71Ile mutation
described above, which abrogates SL, DAT, and PAT synthesis.

Therefore, at present, it is unclear why additional mutations have
been acquired in an already deleterious TCS, and this could rein-
force the hypothesis that mutations in phoPR may not have oc-
curred randomly and could instead represent evolutionary steps
in the attenuation of MTBC species.

COMPENSATORY EVOLUTION: ARMS RACE AGAINST PhoPR
POLYMORPHISMS

Previous observations regarding the ability of M. bovis and M.
africanum strains to efficiently export ESAT-6 despite the delete-
rious Gly71Ile in their PhoR led to the hypothesis that compensa-
tory mechanisms which can recover ESAT-6 secretion indepen-
dently of PhoPR regulation might exist. A detailed inspection of
the PhoP-EspR-EspA regulatory network revealed that several
mutations upstream from the espACD locus have been acquired
by M. bovis and M. africanum species, including the RD8 deletion,
common to both species, and species-specific polymorphisms
close to the PhoP and EspR binding sites (unpublished observa-
tions) (Fig. 3). Notably, introduction of the M. bovis espACD allele
into an M. tuberculosis phoPR mutant restored ESAT-6 secretion,
demonstrating that polymorphisms upstream from espA effi-
ciently compensate the ESAT-6 secretion phenotype in M. bovis
and M. africanum, which otherwise have a deleterious Gly71Ile
substitution in their PhoR (Fig. 4) (14). The precise molecular
reasons for this compensatory mechanism are unclear, although
polymorphisms upstream from espA might increase the affinity of
PhoP or EspR for this promoter region, resulting in espA expres-
sion in the absence of a fully functional PhoPR system. Due to the
key role in the outcome of infection of ESAT-6 as a virulence
factor (34, 35), species defective in ESAT-6 secretion or expres-
sion, such as BCG or M. tuberculosis phoPR mutants, could be
condemned to an impaired person-to-person or animal-to-
animal transmission capacity. Thus, compensatory evolution to
restore ESAT-6 functionality in M. africanum and in animal-
adapted species has presumably occurred to ensure the transmis-
sibility of these species carrying a defective phoR allele.

An alternative example of compensatory evolution refers to a
particular M. bovis isolate named strain B, which, contrary to
other M. bovis strains, was able to transmit from human to human
and caused high mortality among HIV-infected persons. Molec-
ular characterization of strain B revealed the presence of an addi-
tional IS6110 insertion upstream from the phoP gene (Fig. 1C and
2D), and this insertion resulted in enhanced transcription of phoP
(71). Subsequent studies with strain B demonstrated that this sec-
ond IS6110 insertion restored the expression of the PhoP regulon
and reestablished synthesis of PhoP-regulated lipids in M. bovis,
resulting in increased virulence (14), which might explain the rare
transmissibility of strain B between humans. Taken together,
these findings exemplify the evolutionary arms race suffered by
PhoP-dependent phenotypes in order to maintain the full patho-
genic potential of virulent Mycobacterium species.

BIOLOGY LESSONS: INACTIVATE THE PhoP VIRULENCE
REGULATOR TO CONSTRUCT NEW TUBERCULOSIS
VACCINES

In conclusion, once the essential role of PhoPR in M. tuberculosis
virulence and its implications in modeling the evolution of the
MTBC have been reviewed, it is tempting to propose the potential
use of M. tuberculosis phoPR mutants in constructing new safe and
effective human tuberculosis vaccines. Unlike other infectious
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diseases, for which proper immunization relies on efficient hu-
moral responses, protection against tuberculosis is thought to re-
quire an appropriate and long-lasting stimulation of the cellular
arm of the immune system, although identification of biomarkers
of protection against tuberculosis is urgently needed to confirm
this hypothesis. Thus, our ideal conception for an effective tuber-
culosis vaccine would be a live attenuated M. tuberculosis strain
that maintains the whole antigenic potential of the pathogen with-
out causing disease, a classical approach to human vaccinology, as
is the case for most currently licensed human whole-cell vaccines,
which are safe and effective and are based on the human pathogen.
In this context, live attenuated vaccine strains such as the current
BCG are considered possible successful candidates. However, de-
spite its long history of use and global coverage, BCG has failed to
efficiently protect against tuberculosis, particularly in adult pop-
ulations. This failure is probably due to the inability of BCG to
mount an effective long-lasting immunity (72), considered to be
due to a possible lack of an antigenic repertoire that is representa-
tive of the human pathogen. In this context, recent works have
documented considerable epitope decay in BCG compared to the
epitope repertoire of M. tuberculosis, and most of these epitopes
have been shown to be located in RD1, RD2, and RD14, which are
deleted in BCG strains (37). This handicap of BCG could be solved
by using attenuated M. tuberculosis phoPR mutants to construct a
new generation of live tuberculosis vaccines. In this context, an
M. tuberculosis phoP mutant showed a safety profile comparable to
that of BCG and improved protective efficacy in different animal
models (mice, guinea pigs, and nonhuman primates) (12, 73). There
are several potential advantages to employing live-attenuated M. tu-
berculosis phoPR-based vaccines: (i) unlike BCG, a derivative of
cattle-evolved M. bovis, M. tuberculosis phoPR-based vaccines
maintain the whole epitope repertoire of the human pathogen and
are expected to stimulate a more natural immune response in the
human host; (ii) M. tuberculosis phoPR mutants lack the cell wall
lipids SL, DAT, and PAT, which are considered to interfere with
the immune system upon host infection; (iii) impaired secretion
and intact expression of ESAT-6 by these strains allows the loss of
its virulence function in promoting phagosome escape and could
possibly allow for greater immunogenicity due to the numerous
specific human T-cell epitopes identified in ESAT-6; and (iv) as a
consequence of the PhoP-mcr7-tatC regulatory circuit, phoP mu-
tants have been shown to secrete larger amounts of TAT sub-
strates, including antigens of the Ag85 complex, which are consid-
ered to result in increased immunogenicity (Fig. 4). In order to
deal with the inherent safety risks associated with live attenuated
vaccines based on M. tuberculosis, two stable deletion mutations
were generated in the fadD26 gene (abrogating PDIM synthesis)
and in phoP, removing antibiotic resistance markers. The final
construct of the phoP fadD26 mutant was named MTBVAC and
has been shown to have safety and biodistribution comparable to
those of BCG and improved immunogenicity and efficacy against
M. tuberculosis challenge in preclinical animal models (74). Thus,
MTBVAC is the first live attenuated M. tuberculosis vaccine to
fulfill the regulatory requirements to support successful entry into
phase 1 clinical evaluation in healthy adults, and this first-in-
human clinical trial began in 2013 (ClinicalTrials registration
number NCT02013245) (74), marking a milestone in the history
of human vaccinology. The MTBVAC phase 1 trial ended success-
fully in November 2014, showing promising safety and immuno-

genicity that support advanced clinical development (F. Spertini
et al., submitted for publication).
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